PCDVD數位科技討論區
PCDVD數位科技討論區   註冊 常見問題 標記討論區為已讀

回到   PCDVD數位科技討論區 > 其他群組 > 七嘴八舌異言堂
帳戶
密碼
 

  回應
 
主題工具
hpandd66
Regular Member
 
hpandd66的大頭照
 

加入日期: Jul 2001
您的住址: 西雅圖
文章: 92
Unhappy 想請問一題微積分的問題如何解

http://page.freett.com/hpandd66/P1030513.gif

小弟不會貼圖 所以把題目的圖 放在網頁上
我需要求的是最短的梯子長度 梯子和牆的限制都在圖片上
我現在在上的章節是微積分的"導函數"(Derivative)
不過這提似乎跟這個沒有關西的樣子

因為本身數學就不太好 三角函數我又不厲害
每次有這種的題目我都要算好久好久
今天做到小屁屁都紅了 還是算不出來 所以希望會的人可以敎我如何算
如何設它的方程式 還有怎麼求最短的長度

謝謝大家

ps: 阿阿阿阿 為什麼發文量縮水了~~~
真奇妙阿@@ 是不是跟上次停機有關悉
撲~
     
      

此文章於 2004-05-31 03:59 PM 被 hpandd66 編輯.
舊 2004-05-31, 03:36 PM #1
回應時引用此文章
hpandd66離線中  
CRASH
Power Member
 
CRASH的大頭照
 

加入日期: Mar 2000
您的住址: Taipei,Taiwan
文章: 637
ERR
 
__________________
To BLOGGER
舊 2004-05-31, 03:40 PM #2
回應時引用此文章
CRASH離線中  
ganbee
Advance Member
 

加入日期: Jan 2001
文章: 407
回覆: 想請問一題微積分的問題如何解

引用:
Originally posted by hpandd66
http://page.freett.com/hpandd66/P1030513.JPG

小弟不會貼圖 所以把題目的圖 放在網頁上
我需要求的是最短的梯子長度 梯子和牆的限制都在圖片上
我現在在上的章節是微積分的"導函數"(Derivative)
不過這提似乎跟這個沒有關西的樣子

因為本身數學就不太好 三角函數我又不厲害
每次有這種的題目我都要算好久好久
今天做到小屁屁都紅了 還是算不出來 所以希望會的人可以敎我如何算
如何設它的方程式 還有怎麼求最短的長度

謝謝大家

ps: 阿阿阿阿 為什麼發文量縮水了~~~
真奇妙阿@@ 是不是跟上次停機有關悉
撲~


我最不會設方程式了,我只知道方程式設好後,微分兩次後求極小值,所以只能幫貼。
PS.那是你女朋友嗎?好可愛耶!


此文章於 2004-05-31 04:05 PM 被 ganbee 編輯.
舊 2004-05-31, 04:00 PM #3
回應時引用此文章
ganbee離線中  
hpandd66
Regular Member
 
hpandd66的大頭照
 

加入日期: Jul 2001
您的住址: 西雅圖
文章: 92
引用:
Originally posted by CRASH
ERR


不好意思 已經換好的 應該可以看了
謝謝
舊 2004-05-31, 04:01 PM #4
回應時引用此文章
hpandd66離線中  
hpandd66
Regular Member
 
hpandd66的大頭照
 

加入日期: Jul 2001
您的住址: 西雅圖
文章: 92
回覆: 回覆: 想請問一題微積分的問題如何解

引用:
Originally posted by ganbee
我最不會設方程式了,我只知道方程式設好後,微分兩次後求極小值,所以只能幫貼。
PS.那是你女朋友嗎?好可愛耶!



阿................這位同學 離題也離太多了啦~~
撲 對啦 這是我做的網頁 就當作是自己以前的故事八
可愛ㄇ? 哈哈 真的阿~~ 是可愛阿 不過現在已經沒有再一起了

因為想不到圖要放哪 就先隨便放在網頁上
你還真會翻阿 厲害喔~~
不過幫我看一下數學阿 我好想哭喔~~
不要看妹啦~~ Please~
舊 2004-05-31, 04:05 PM #5
回應時引用此文章
hpandd66離線中  
藥用酒精
New Member
 

加入日期: May 2004
文章: 1
不確定~好久沒碰微積分了~

用你的假設L1,L2.. , @ -> theta .
---
sin @ = L2/8
cos @ = L1/1

L1 + L2 = 8sin@ + cos@
L = 8sin@ + cos@
L' = 8cos@ - sin@ = 0 ==> 8cos@ = sin@ ==> 8 = sin@/cos@ => 8 = tan@ ==> @= atan(8)-->解出來@ ..
帶回L= ... 即可求出極值.
---

沒仔細算過..也許是錯的喔 XD~
舊 2004-05-31, 04:43 PM #6
回應時引用此文章
藥用酒精離線中  
冷峰
Major Member
 

加入日期: Oct 2003
文章: 120
設大三角形底邊為x
小三角形與大三角相似,
再利用畢氏定理,求出L1,L2
舊 2004-05-31, 04:53 PM #7
回應時引用此文章
冷峰離線中  
Cudacke
*停權中*
 
Cudacke的大頭照
 

加入日期: Oct 2003
文章: 1,311
1/L1 = cos(x)
8/L2 = sin(x)

=> L1 + L2 = 1/cos(x) + 8/sin(x)
d(L1 + L2)/dx = sin(x)/(cos(x)^2) - 8cos(x)/(sin(x)^2)

let d(L1 + L2)/dx = 0
=> sin(x)/(cos(x)^2) = 8cos(x)/(sin(x)^2)
=> sin(x)^3 = 8*cos(x)^3
=> sin(x) = 2cos(x)
=> tan(x) = 2
=> L1 = sqrt(1^2 + 2^2) = sqrt(5)
=> L2 = sqrt(4^2 + 8^2) = sqrt(80)

Proofs of Derivative of Trig Functions
舊 2004-05-31, 05:10 PM #8
回應時引用此文章
Cudacke離線中  
ganbee
Advance Member
 

加入日期: Jan 2001
文章: 407
引用:
Originally posted by Cudacke
1/L1 = cos(x)
8/L2 = sin(x)

=> L1 + L2 = 1/cos(x) + 8/sin(x)
d(L1 + L2)/dx = sin(x)/(cos(x)^2) - 8cos(x)/(sin(x)^2)

let d(L1 + L2)/dx = 0
=> sin(x)/(cos(x)^2) = 8cos(x)/(sin(x)^2)
=> sin(x)^3 = 8*cos(x)^3
=> sin(x) = 2cos(x)
=> tan(x) = 2
=> L1 = sqrt(1^2 + 2^2) = sqrt(5)
=> L2 = sqrt(4^2 + 8^2) = sqrt(80)

Proofs of Derivative of Trig Functions


有人求出來了,這位大大真利害,微分兩次原來是求反曲點,只要微一次就好了。
我還是繼續看照片好了。
舊 2004-05-31, 05:17 PM #9
回應時引用此文章
ganbee離線中  
minren
New Member
 
minren的大頭照
 

加入日期: Jun 2003
您的住址: .....茫然
文章: 6
剛剛設長度x算了一下
那計算還真是.....

樓主的網站真棒
內容豐富~
舊 2004-05-31, 09:40 PM #10
回應時引用此文章
minren離線中  


    回應


POPIN
主題工具

發表文章規則
不可以發起新主題
不可以回應主題
不可以上傳附加檔案
不可以編輯您的文章

vB 代碼打開
[IMG]代碼打開
HTML代碼關閉



所有的時間均為GMT +8。 現在的時間是03:45 AM.


vBulletin Version 3.0.1
powered_by_vbulletin 2025。