Major Member
|
通過這個基本原理,我們知道一個理想的音響聆聽環境,必須是一個完全密封的空間,因為任何的縫隙都會使外面的聲音滲透到室內。令人驚呀的是,大量的聲音會從一個很小的縫隙滲透進去,這和一個好的音箱的密封要求是同樣的原理。
聲音是一種球狀波,從音箱發出來的聲音會向外擴散,比直射的還多。由於低頻的波長比高頻長,因此它們的擴散幅度也比高頻更大。以一個小的密封的音箱所發出的聲音為例,圖中的曲線代表相等密度(90dB的等高線),我們可以很明顯的看出,高頻率的聲音比低頻率的聲音擴散性要窄一些。(請參考圖3)

(圖三)
繞射的真相能告訴我們一些選擇音箱時的技巧。一些小的音箱通常會被推銷為與大音箱般擁有一樣好的聲音,從它的外形來看是值得懷疑的。因為大的音箱在室內產生低頻會比較有效率,雖然可以通過電子調節器和分頻器的設計來解決一部份問題,仍無法省略繞射的作用。比較小或前障板比較窄的音箱,的確在繞射干擾方面有優勢,可以得到比較好的音場效果。
什麼是音波?
在聲學字典中,音波的定義是:“在一個環境中,一個干擾或變化的能量,從一個點到另一個點逐步的轉移,它們可以形成一個有彈性、變形的的形式,或一個壓力的變化、電流或磁力的密度、電流的潛能或溫度的形式。
請注意這定義中最重要的一部份,所謂在環境中流動的音波,是一種干擾或變化的能量,而這能量一般指的是空氣。當音波流動時會引起空氣內部的振盪,不過音波經過時空氣微粒卻不會隨音波流動,也就是空氣其實沒有移動。由於干擾或說是音波形狀有許種,從個有限的音波寬到一個無限長的正弦音波,這時空氣會隨著音波形狀而改變。
這麼說大家可能還是不太明白,我們舉一個你可能曾經“製造”過的音波為例。在人潮爆滿的足球比賽中,啦啦隊為球員加油時,一群人會跳起來又坐回去,靠近的人看見它們坐回去又跳起來。接著,更遠的人跟著自已配合,?做出同樣的動作。不久後你就會看見在運動場上有類似海浪的起伏,移動的音波就是這個樣子。在這個例子中沒有人在觀眾席上跑來跑去製造以上所述的音波,當音波在移動時,它們都保持在它們的座位上。
音波同時也是立體的,從縱的(Longitudinal)角度來看,音波在空氣中的特性就像上述的例子一樣。當音波經過,那時微粒保持在它們平衡的位置上,在空氣中前後振盪。這些音波的微粒就好比是運動場上的人群,而形成音波的原理就像是人群在作站起和坐下的動作一樣。這就是移動的干擾,是由很多微粒組合成的,而不是在環境中單獨的一顆微粒所能形成的。
|